4725 Further Pure Mathematics 1

1	$\frac{7}{26}+\frac{17}{26} \mathrm{i}$.	$\begin{aligned} & \text { M1 } \\ & \text { A1 A1 } \\ & \text { A1 } \end{aligned}$	4	Multiply by conjugate of denominator Obtain correct numerator Obtain correct denominator
2	(i) $\frac{1}{10}\left(\begin{array}{cc}5 & 0 \\ -a & 2\end{array}\right)$ (ii) $\left(\begin{array}{cc}3 & -2 \\ 2 a & 6\end{array}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	Both diagonals correct Divide by correct determinant Two elements correct Remaining elements correct
3	$\begin{aligned} & n^{2}(n+1)^{2}+n(n+1)(2 n+1)+n(n+1) \\ & n(n+1)^{2}(n+2) \end{aligned}$	M1 A1 A1 M1 A1ft A1	6	Express as sum of 3 terms 2 correct unsimplified terms $3^{\text {rd }}$ correct unsimplified term Attempt to factorise Two factors found, ft their quartic Correct final answer a.e.f.
4	$\left(\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	4 4	State or use correct result Combine matrix and its inverse Obtain I or \mathbf{I}^{2} but not 1 Obtain zero matrix but not 0 S.C. If $0 / 4, \mathbf{B 1}$ for $\mathbf{A A}^{-1}=\mathbf{I}$
5	Either $4 k-4$ $k=1$ Or	M1 M1 A1 M1 A1ft M1 A1 M1 A1 A1	5	Consider determinant of coefficients of LHS Sensible attempt at evaluating any 3×3 det Obtain correct answer a.e.f. unsimplified Equate det to 0 Obtain $k=1$, ft provided all M's awarded Eliminate either x or y Obtain correct equation Eliminate $2^{\text {nd }}$ variable Obtain correct linear equation Deduce that $k=1$
6	(i) Either Or (ii) (iii) $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ (iv)	B1 DB1 B1 DB1 B1 DB1 B1 B1 B1B1B1	2 2 3 9	Reflection, in x-axis Stretch parallel to y-axis, s.f. -1 Reflection, in $y=-x$ Each column correct Rotation, 90°,clockwise about O S.C. If (iii) incorrect, B1 for identifying their transformation, B1 all details correct

\begin{tabular}{|c|c|c|c|c|}
\hline 7 \& \begin{tabular}{l}
(i) \(13^{n}+6^{n-1}+13^{n+1}+6^{n}\) \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { B1 }
\end{aligned}
\] \& 3

4

4 \& | Correct expression seen |
| :--- |
| Attempt to factorise both terms in (i) |
| Obtain correct expression |
| Check that result is true for $n=1$ (or 2) |
| Recognise that (i) is divisible by 7 |
| Deduce that u_{n+1} is divisible by 7 |
| Clear statement of Induction conclusion |

\hline 8 \& | (i) |
| :--- |
| (ii) $\begin{aligned} \alpha+\beta & =6 k, \alpha \beta=k^{2} \\ \alpha-\beta & =(4 \sqrt{2}) k \end{aligned}$ |
| (iii) $\begin{aligned} & \sum \alpha^{\prime}=6 k \\ & \alpha^{\prime} \beta^{\prime}=\alpha \beta-(\alpha-\beta)-1 \\ & \alpha^{\prime} \beta^{\prime}=k^{2}-(4 \sqrt{2}) k-1 \\ & x^{2}-6 k x+k^{2}-(4 \sqrt{2}) k-1=0 \end{aligned}$ | \& | M1 |
| :--- |
| A1 |
| B1 B1 M1 A1 |
| B1 ft |
| M1 |
| A1ft |
| B1 ft | \& 2

4
4

4

10 \& | Expand at least 1 of the brackets Derive given answer correctly |
| :--- |
| State or use correct values Find value of $\alpha-\beta$ using (i) Obtain given value correctly (allow if $-6 k$ used) |
| Sum of new roots stated or used |
| Express new product in terms of old roots |
| Obtain correct value for new product |
| Write down correct quadratic equation |

\hline 9 \& | (i) |
| :--- |
| (ii) $1+\frac{1}{3}-\frac{1}{2 n-1}-\frac{1}{2 n+1}$ |
| (iii) $\frac{4}{3}$ | \& \[

$$
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { B1ft }
\end{aligned}
$$
\] \& 2

6
1

9 \& | Use correct denominator Obtain given answer correctly |
| :--- |
| Express terms as differences using (i) |
| Do this for at least $1^{\text {st }} 3$ terms |
| First 3 terms all correct |
| Last 3 terms all correct (in terms or n or r) |
| Show pairs cancelling |
| Obtain correct answer, a.e.f.(in terms of n) |
| Given answer deduced correctly, ft their (ii) |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 10 \& \begin{tabular}{l}
(i) \\
(ii)
\[
\begin{aligned}
\& x^{2}-y^{2}=2,2 x y=\sqrt{5} \\
\& 4 x^{4}-8 x^{2}-5=0 \\
\& x= \pm \frac{\sqrt{10}}{2}, y= \pm \frac{\sqrt{2}}{2} \\
\& \pm\left(\frac{\sqrt{10}}{2}+\mathrm{i} \frac{\sqrt{2}}{2}\right) \\
\& z^{2}=2 \pm \mathrm{i} \sqrt{5} \\
\& z= \pm\left(\frac{\sqrt{10}}{2} \pm \mathrm{i} \frac{\sqrt{2}}{2}\right)
\end{aligned}
\] \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1ft \\
B1ft \\
B1 B1ft \\
B1 ft
\end{tabular} \& 1

3

14 \& | Attempt to equate real and imaginary par Obtain both results a.e.f. |
| :--- |
| Eliminate to obtain quadratic in x^{2} or y^{2} |
| Solve to obtain x (or y) values |
| Correct values for both $\mathrm{x} \& \mathrm{y}$ obtained a.e.f. |
| Correct answers as complex numbers |
| Solve quadratic in z^{2} |
| Obtain correct answers |
| Use results of (i) |
| Obtain correct answers, ft must include root from conjugate |
| Sketch showing roots correctly |
| Sketch of straight line, \perp to α |
| Bisector |

\hline
\end{tabular}

